Protein sensing in living cells by molecular rotor-based fluorescence-switchable chemical probes.

نویسندگان

  • Wan-Ting Yu
  • Ting-Wei Wu
  • Chi-Ling Huang
  • I-Chia Chen
  • Kui-Thong Tan
چکیده

In this paper, we introduce a general design to construct fluorescence-switching probes by using conjugates of a fluorescent molecular rotor and protein specific ligands for the selective protein detection and real-time tracking of protein degradation in living cells. Upon the interaction of the ligand with the protein ligand-binding domain, the crowded surroundings restrict the bond rotation of the fluorescent molecular rotor to trigger the emission of a strong fluorescence signal, which is reduced upon the addition of a competitive ligand or after protein degradation. With this probe design, two fluorescent probes for MGMT and hCAII proteins were constructed and applied for detecting the endogenous proteins in living cells. In addition, real-time degradation kinetics of the alkylated-MGMT at the single living cell level were revealed for the first time. We believe that this fluorescence-switching probe design can possibly be extended for the analysis of other proteins, for which there are still no effective tools to visualize them in living cells.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Mechanisms and Biomedical Applications of an NIR BODIPY-Based Switchable Fluorescent Probe

Highly environment-sensitive fluorophores have been desired for many biomedical applications. Because of the noninvasive operation, high sensitivity, and high specificity to the microenvironment change, they can be used as excellent probes for fluorescence sensing/imaging, cell tracking/imaging, molecular imaging for cancer, and so on (i.e., polarity, viscosity, temperature, or pH measurement)....

متن کامل

Ionic Strength Sensing in Living Cells

Knowledge of the ionic strength in cells is required to understand the in vivo biochemistry of the charged biomacromolecules. Here, we present the first sensors to determine the ionic strength in living cells, by designing protein probes based on Förster resonance energy transfer (FRET). These probes allow observation of spatiotemporal changes in the ionic strength on the single-cell level.

متن کامل

Development of reversible fluorescence probes based on redox oxoammonium cation for hypobromous acid detection in living cells.

We describe the synthesis, properties, and application of two reversible fluorescent probes, mCy-TemOH and Cy-TemOH, for HOBr sensing and imaging in live cells. The two probes contain a hydroxylamine functional group for the monitoring of HOBr oxidation/ascorbic acid reduction events. Confocal fluorescence microscopy has established the HOBr detection in live-cells.

متن کامل

Techniques for Monitoring Protein Misfolding and Aggregation in Vitro and in Living Cells.

Protein misfolding and aggregation have been considered important in understanding many neurodegenerative diseases and recombinant biopharmaceutical production. Therefore, various traditional and modern techniques have been utilized to monitor protein aggregation in vitro and in living cells. Fibril formation, morphology and secondary structure content of amyloidogenic proteins in vitro have be...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Chemical science

دوره 7 1  شماره 

صفحات  -

تاریخ انتشار 2016